PHYS 305

PHYS 305#

Course Number & Title: PHYS 305—001 Computational Physics
Course Website: https://ua-2025q1-phys305.github.io

Full Syllabus: Syllabus

Time: Tuesday & Thursday 12:30–1:45pm
Location: Social Sciences, Room 206

Instructor: Chi-kwan “CK” Chan chanc@arizona.edu Office hour: Mon 1-2pm, Wed 11am–noon (SO N332)
Teaching Assistant: Devendran “Deva” Vemula devendranvemula@arizona.edu Consultation hour: Wed 12 - 1pm (PAS 372)
Preceptor: Nikhil Garuda nikhilgaruda@arizona.edu
Please include “PHYS305” in subjects of emails

#

Week

Tuesday

Thursday

1

Jan 12–Jan 18

Overview (lab)

2

Jan 19–Jan 25

Data Representation (lab)

Numerical Linear Algebra (lab, sol)

3

Jan 26–Feb 1

Fourier Transform and Spectral Analyses (lab, sol)

Guest lecture: Useful Tools (homework 1)

4

Feb 2–Feb 8

Interpolation and Extrapolation (lab, sol)

Numerical and Automatic Derivatives (lab, sol)

5

Feb 9–Feb 15

Numerical Integration of Functions (lab, sol)

Root Finding (lab, sol)

6

Feb 16–Feb 22

Optimization Methods (lab, sol; homework)

Data Modeling I: Probability and Statistics (lab, sol)

7

Feb 24–Mar 1

Data Modeling II: Bayesian Statistics (lab, sol)

Selected techniques in machine learning (lab)

8

Mar 2–Mar 8

Project I presentations

Project I presentations (homework`)

9

Mar 9–Mar 15

Spring recess (no class)

Spring recess (no class)

10

Mar 16–Mar 22

ODE Integrators I: Explicit Methods (lab, sol)

ODE integrators II: implicit and symplectic methods (lab, sol)

11

Mar 24–Mar 29

ODE Integrators III: Advanced Topics (lab, sol)

The C programming language (homework)

12

Mar 30–Apr 5

Monte Carlo Methods I: Random Numbers and Random Walk (lab, )

Monte Carlo Methods II: Ising Model and Hopfield Network

13

Apr 6–Apr 12

Monte Carlo Methods III: Parameter Estimation and Markov Chain

Parallel Computing (homework)

14

Apr 13–Apr 19

Numerical Partial Differential Equation I: Introduction

Numerical Partial Differential Equation II: Stability Analysis

15

Apr 20–Apr 26

Numerical Partial Differential Equation III: Finite Volume

Numerical Partial Differential Equation IV: Spectral Methods (homework)

16

Apr 27–May 3

Project II presentations

Project II presentations

17

May 4–May 10

Visiting UA HPC

Reading Day (no class)

Syllabus

Data Representation

Useful Tools

Selected techniques in machine learning

The C programming language

Parallel Computing